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Постановка задачи и результаты

Целями данной работы являются:
Описание проявления вакуумной нелинейности КЭД в резонаторе в
классическом1 и квантовом формализмах
Поиск условий для резонансного усиления высших гармоник
Объяснение классического предсказания на квантовом уровне

Достигнутые результаты:
Автоматизация2 метода разделения переменных в классическом
формализме
Подбор конфигурации резонатора-параллелепипеда для генерации
высшей гармоники
Получение двух согласующихся оценок для числа сигнальных
фотонов идейно различными путями

1Phys.Rev.A 105 (2022) 1, 013508 (arXiv: 2110.04490)
2https://github.com/Ilia-Ko/Supplemental-Materials/tree/main/Nonlinear-ED/Part-I
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Нелинейная электродинамика
Модель Эйлера-Гейзенберга

Взаимодействие с виртуальными электронами отынтегрировано (в
пределе p ≪ me)

Эффективный лагранжиан Эйлера-Гейзенберга 3 (ℏ = c = 1 + Хевисайд с.ед.)

LEH = −1
4F + κ

(
F2 +

7
4G

2
)
, κ =

α2
e

90m4e
.

F = FµνFµν = −2
(

E2 − B2
)
, G = Fµν F̃µν = −4(E · B),

3H.Euler and B. Kockel (1935), W.Heisenberg and H.Euler (1936)
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Нелинейная электродинамика
Вклады из «новой физики»

Lϕ =
1
2 (∂µϕ)

2 −
m2

ϕϕ
2

2 + gs ϕF

⇓

LEFT
ED ⊃ g2

s
2m2

ϕ

F2

La =
1
2 (∂µa)2 − m2

aa2

2 + ga aG

⇓

LEFT
ED ⊃ g2

a
2m2a

G2

Lnonlinear = κ
(
F2 + βG2

)
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Рассеяние света на свете в радиочастотных
резонаторах

Нелинейная теория с 4-фотонным взаимодействием: γγ → γγ рассеяние.
Радио моды в резонаторах: возможность генерации мод комбинированных
частот. 4

моды накачки: ω1, ω2

сигнальные моды: 2ω1(2) ± ω2(1), 3ω1(2).

резонансное усиление сигнальной
моды
Q ∼ 1011 в сверхпроводящих
резонаторах

В работе 4 не представлены в явном виде резонансные решения.
Нет резонансного усиления 3-й гармоники в 1D. K. Shibata. EPJ D (2020)
Цель работы— явно найти резонансные решения в 1D и 3D либо показать, что
их нет. Рассмотреть генерацию в классическом и квантовом формализмах.

4G. Brodin, M. Marklund, L. Stenflo. Phys. Rev. Lett. (2001)
D. Eriksson, G. Brodin, M. Marklund, L. Stenflo. Phys. Rev. A (2004)
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Нелинейные уравнения Максвелла и волновые
уравнения

Нелинейные уравнения Максвелла

∇× B =
∂E
∂t +

[
∂P
∂t −∇× M

]
∇× E = −∂B

∂t

∇ · E = [−∇ · P]
∇ · B = 0

Векторы вакуумной поляризации и намагничения

P = 16κ
[(

E2 − B2
)

E + 7/2(E · B)B
]

M = 16κ
[(

E2 − B2
)

B − 7/2(E · B)E
]

Модифицированные волновые уравнения

□E = ∇× ∂tM +∇(∇ · P)− ∂2
t P

□B = ∇× ∂tP −∇(∇ · M) + ∆M
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Резонансное усиление сигнальной моды

ЭМ поле: моды накачки (даны изначально) + сигнальная мода (которую
ищем), E = Ep + Esig, B = Bp + Bsig

Иерархия параметров: |Esig| ∼ κ|Ep|3 ⩽ 10−24|Ep| ≪ |Ep|

Пертурбативные волновые уравнения, линейные по Esig:

□Esig = ∇× ∂tM(Ep,Bp) +∇(∇ · P(Ep,Bp))− ∂2
t P(Ep,Bp)

□Bsig = ∇× ∂tP(Ep,Bp)−∇(∇ · M(Ep,Bp)) + ∆M(Ep,Bp)

имеют резонансно растущие решения,

□Ex = cos(ωrt) sin(ωrx) + ... → E(growing)
x =

t
ωr

sin(ωrt) sin(ωrx).

Введём диссипацию Γ на исследуемой частоте Ω:

(□+ ΓΩ∂t)Ex = cos(ωrt) sin(ωrx) → E(steady)
x =

1
Γωr

sin(ωrt) sin(ωrx).
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Резонатор-отрезок / одномодовый режим

Одномерный резонатор с идеальными стенками: Ly,Lz ≫ Lx ≡ a
Собственные частоты: ωn = kn = πn

a , n ∈ N

Монохроматическое возбуждение резонатора:{
Epump(x, t) = B0 sin(knx) sin(ωnt) ey,

Bpump(x, t) = B0 cos(knx) cos(ωnt) ez.
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Резонатор-отрезок / одномодовый режим

Мода накачки: Epump
y = B0 sin(ωnx) sin(ωnt), Bpump

z = B0 cos(ωnx) cos(ωnt).

Уравнения на сигнальные моды5:
(□ + ΓΩ∂t

)
Esig

y = 8κB3
0ω

2
n

[
2 sin

(
ωn x

)
sin

(
ωn t

)
− 3 sin

(
ωn x

)
sin

(
3ωn t

)
+ sin

(
3ωn x

)
sin

(
ωn t

)]
,

(□ + ΓΩ∂t
)
Bsig

z = 8κB3
0ω

2
n

[
2 cos

(
ωn x

)
cos

(
ωn t

)
− cos

(
ωn x

)
cos

(
3ωn t

)
+ 3 cos

(
3ωn x

)
cos

(
ωn t

)]
.

Волновые числа в правых частях n 3n
Соответствующие частоты ωn, ω3n ωn

Эволюция сигнальной моды6:
Основная частота ωn усиливается резонансно
Но: бесполезна, т.к. теряется на фоне мод накачки

Нет резонансного усиления высшей гармоники 3ωn .

5Символьные вычисления осуществляются в СКА “wxMaxima 21.02.0”.
6Согласуется с K. Shibata. EPJ D (2020).
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Резонатор-отрезок / двухмодовый режим

Две моды накачки с частотами: ωn = πn
a , ωp = πp

a , n, p ∈ N
Epump(x, t) = B0 Re

{
En(x) eiωnt + R̂x(α)Ep(x) eiωpt

}
,

Bpump(x, t) = B0 Re
{

iMn(x) eiωnt + R̂x(α)iMp(x) eiωpt
}
,

R̂x(α) =

1 0 0
0 cosα − sinα
0 sinα cosα



Спектры правых частей сигнальных уравнений:

Индексы n 3n 2n − p 2n + p
Спектры ωn , ω2p±n, ω3n ωn ωp, ω2n+p ωp, ω2n−p

+(n ↔ p)

Резонансно усиливаются только гармоники ωn и ωp

Нет слагаемых cos((2ωn ± ωp)t) cos((2ωn ± ωp)x) в правых частях
Гармоники смешанных частот ω2n±p не резонируют!
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Параллелепипед / одномодовый режим

Собственные функции параллелепипеда с идеальными стенками:

ETM
npq(r), MTM

npq(r), n, p ∈ N, q ∈ N0, knpq =
(πn

a ,
πp
b ,

πq
c

)
,

ETE
npq(r), MTE

npq(r), n, p ∈ N0, q ∈ N, ωnpq = |knpq| = π

√
n2

a2 +
p2

b2 +
q2

c2 .
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Параллелепипед / одномодовый режим

Возбуждение монохроматичным полем частоты ωnpq.

Неоднородности (правые части) сигнальных уравнений:

(□+ ΓΩ∂t)E(t, r) = Fel(t, r), (□+ ΓΩ∂t)B(t, r) = Fmg(t, r).

Спектры неоднородностей сигнальных уравнений:

Моды n, p, q 3n, p, q 3n, 3p, q (n ↔ p ↔ q) 3n, 3p, 3q
Спектры Fel,Fmg ωnpq, 3ωnpq ωnpq

Основная частота ωnpq резонансно усиливается
Утроенная гармоника 3ωnpq не генерируется
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Параллелепипед / двухмодовый режим

Два независимых сектора в спектрах правых частей сигнальных ур-й

Индексы
n1
p1
q1

3n1
p1
q1

n1
3p1
q1

113
· · ·
331

3n1
3p1
3q1

Fel
z на TM

ω1, 3ω1, 2ω2 + ω1, 2ω2 − ω1
ω1, 3ω1 ω1

Fmg
z на TE ω1, (3ω1) —

Индексы
2n2 ± n1

p1
q1

n1
2p2 ± p1

q1

n1
p1

2q2 ± q1

· · ·
2n2 ± n1
2p2 ± p1
2q2 ± q1

Fel
z на TM

ω1, 2ω2 + ω1, 2ω2 − ω1Fmg
z на TE

Некоторые амплитуды зануляются, когда k1 ∥ k2

2ω2 + ω1 отсутствует в секторе с утроенными индексами
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Параллелепипед / ТМ110 + ТЕ011

Моды накачки: TM110 + TE011

Epump(t, r) = B0 Re
{
ETM

110(r) eiω110t + ETE
011(r) eiω011t

}
,

Bpump(t, r) = B0 Re
{

iMTM
110(r) eiω110t + iMTE

011(r) eiω011t
}
.

И. Копчинский (кафедра ФЧК) Защита бакалаврской работы 30 мая 2022 15 / 25



Параллелепипед / ТМ110 + ТЕ011

Спектры неоднородностей сигнальных уравнений:

ТМ-моды 110 130 310 330
Спектры ω110, 3ω110, 2ω011 ± ω110 ω110, 3ω110 ω110

ТМ-моды 112 132 211 231
Спектры ω110, 2ω011 ± ω110 ω011, 2ω110 ± ω011

TE-моды 011 031 013 033
Спектры ω011, 3ω011, 2ω110 ± ω011 ω011, 3ω011 ω011

TE-моды 112 132 211 231
Спектры ω110, 2ω011 ± ω110 ω011, 2ω110 ± ω011

ω110 (ω011) резонируют, 3ω110 (3ω011) не резонируют
Условие попадания на спектр 2ω011 − ω110 = ω130 разрешимо

Нет резонанса комбинационной частоты 2ω011 + ω110 (2ω110 + ω011)
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Параллелепипед / ТМ110 + ТЕ011

2ω011 − ω110 = ω130

ωnpq = π

√
n2

L2x
+

p2

L2y
+

q2

L2z
⇒

(
Lz

Lx

)2(Lz

Ly

)2
+

(
Lz

Lx

)2
+ 3

(
Lz

Ly

)2
= 1

+ фиксируем Lx = Ly ⇒ Lx : Ly : Lz = 1 : 1 : r, r =
(√

5 − 2
) 1

2 ≈ 0.486

Восстановим явный вид сгенерированной гармоники:
Esig(t, r) = Bsig

0 Re
{
ETM

130(r) ei(ω130t+π)
}
,

Bsig(t, r) = Bsig
0 Re

{
iMTM

130(r) ei(ω130t+π)
}
,

Bsig
0 = G0

π2κB3
0Q

(ω130Lz)2

Амплитуда Bsig
0 = G0

π2κB3
0Q

(ω130Lz)
2 ≈ 10−16 Тл (только Эйлер-Гейзенберг)

при параметрах B0 = 0.1Тл, Q = 1010, Lz = 20 см, ω130 = 2.4ГГц.
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Параллелепипед / ТМ110 + ТЕ011

Обобщение теории Эйлера-Гейзенберга 7/4 → β:

Leff = −1
4F + κ

(
F2 + βG2

)
Геометрический коэффициент G0:

G0(r, β) =
4
(

4 + r
√

2(1 + r2) + r2
)
− 4βr

(√
2(1 + r2)3 + (3 + r2)r

)
1 + r2 .

Для β = 7
4 и r =

(√
5 − 2

) 1
2 ⇒ G0 ≈ 6.51.

Может зануляться при некотором β или особой геометрии Lx : Ly : Lz.

И. Копчинский (кафедра ФЧК) Защита бакалаврской работы 30 мая 2022 18 / 25



Подытог классической части

Третья гармоника (3ω1) не усиливается в 1D- и 3D-резонаторах
Комбинационная гармоника (2ω1 + ω2) не усиливается в 1D- и
3D-резонаторах
Мода (2ω1 − ω2) может генерироваться в 3D-резонаторе.
Конструктивно показано для ω130 = 2ω011 − ω110

Нерешённые вопросы:

Почему не генерируются третья гармоника и 2ω1 + ω2?
Третья гармоника резонансно усиливается в теории λϕ4!
Как понимать генерацию 2ω1 − ω2 на квантовом уровне? По закону
сохр. энергии, процесс 3 → 1 рождает конечный фотон 2ω1 + ω2.
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Квантовое описание

L = L0 + LEH

L0 = − 1
4 FµνFµν ⇒ квантование свободного поля

LEH = 4κ
[
(B2 − E2)2 + 4β(B · E)2] ⇒ 1-й порядок ТВ

Переход |i⟩ −→ |f⟩ , матрица S = Texp
(

i
∫

LEH(x) dx
)

= 1 + iT

Tfi = 2πδ(ωf − ωi) · Mfi, 2πδ(ωf − ωi) =
Q

ωsig

Среднее равновесное число фотонов Nquant
sig =

∫
|Tfi|2dΦ =

Q2|Mfi|2

ω2
sig
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Квантование свободных полей на отрезке

Граничные условия:

E · τ
∣∣
x=0,Lx

= 0, B · n
∣∣
x=0,Lx

= 0 ⇒ A · τ
∣∣
x=0,Lx

= 0

Разложение по модам:

Ai(t, x) = A+
i (t, x) + A−

i (t, x), A±
i (t, x) =

√
2
V

∞∑
n=1

a±
i,n sin(knx) e±iωnt

√
2ωn

, kn =
πn
Lx

Квантование:
[
a−

i,n, a+
j,n′

]
= δij δnn′
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Свободное поле в параллелепипеде

Раскладываем A(t, r) по ТЕ- и ТМ-модамAλ
npq(r), λ ∈ {TE,TM}

A(t, r) = A+(t, r) + A−(t, r), A±(t, r) = 1√
V

∑
λ,npq

aλ±
npq Aλ

npq(r)
e±iωnpqt√

2ωnpq

Квантование:
[
aλ−

npq, aλ′+
n′p′q′

]
= δλλ′ δnn′ δpp′ δqq′
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Матричные элементы

На отрезке:

〈
1(l)

3n

∣∣∣M∣∣∣2(i)
n , 1(j)

n

〉
=

=0︷ ︸︸ ︷〈
:B4:

〉
+

〈
:E4:

〉
− 2

〈
:B2E2:

〉
+

=0︷ ︸︸ ︷
4β

〈
:(BE)2:

〉
= 0

см. LEH = 4κ
[(

B2 − E2)2
+ 4β(B · E)2

]
Процесс n,n,n → 3n запрещён.

〈
1(s)

2n+p

∣∣∣M∣∣∣1(i)
n , 1(j)

n , 1(l)
p

〉
=

=0︷ ︸︸ ︷〈
:B4:

〉
+

〈
:E4:

〉
− 2

〈
:B2E2:

〉
+

=0︷ ︸︸ ︷
4β

〈
:(BE)2:

〉
Процесс n,n, p → 2n + p тоже запрещён.
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Матричные элементы

На отрезке:

〈
1(l)

3n

∣∣∣M∣∣∣2(i)
n , 1(j)

n

〉
=

=0︷ ︸︸ ︷〈
:B4:

〉
+

〈
:E4:
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− 2

〈
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Матричные элементы

В параллелепипеде:

запрещён процесс для фотонов 2ω011 + ω110 −̸→ ω130〈
1TM

130 , ξTE
011, η

TM
110

∣∣∣∣M∣∣∣∣ ξTE
011, η

TM
110

〉
=

−4κξ2η∗

V ×

×
k2

1zω130ω110 + k2
1z(2ω2

110 + k2
1y)− βk2

1y(ω011 + ω110)
2

ω011
√
ω130ω110

Идёт когерентная генерация сигнальной моды TM130 со средним
равновесным числом фотонов: Nquant

sig = g1κ
2Q2B6

0L4
z

Классический результат: Nclass
sig = g0κ

2Q2B6
0L4

z , g0 ≡ g1 ≃ 10
3

Точное совпадение классического и квантового предсказаний:

Nclass
sig = Nquant

sig = Nsig ≃ 55фотонов
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Выводы квантовой части

Высшие гармоники не генерировались из-за специфичной
векторной структуры инвариантов электромагнитного поля
F = 2

(
B2 − E2), G = −4(B · E)

На уровне одиночных фотонов процессы 3 → 1 запрещены

Идёт генерация высших гармоник на фоне когерентных мод накачки
Классический и квантовый подходы дают идентичное предсказание

Nsig ≃ 10
3 κ2Q2B6

0L4
z ≃ 55фотонов,

и возможности квантового описания шире.
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Выводы квантовой части

Высшие гармоники не генерировались из-за специфичной
векторной структуры инвариантов электромагнитного поля
F = 2

(
B2 − E2), G = −4(B · E)

На уровне одиночных фотонов процессы 3 → 1 запрещены
Идёт генерация высших гармоник на фоне когерентных мод накачки
Классический и квантовый подходы дают идентичное предсказание

Nsig ≃ 10
3 κ2Q2B6

0L4
z ≃ 55фотонов,

и возможности квантового описания шире.

Спасибо за внимание!
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Запас | Нормировка и фазовый объём

Настройка резонатора: 2πδ
(
ω130 − 2ω011 + ω110

)
= 2πδ(0)

2πδ(0) = τγ =
1
Γ

=
Q
ω
— время затухания фотона частоты ω

wfi = |Tfi|2 =
∣∣2πδ(0)Mfi

∣∣2 =
Q2

ω2 |Mfi|2

Фазовый объём: dΦ = V dk
(2π)3 = V∆n

Lx

∆p
Ly

∆q
Lz

= 1 (разложение в ряд

Фурье)

Среднее равновесное количество фотонов: Nsig =
Q2

ω2
130

|Mfi|2 1
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Запас | Спаривания ЭМП

Нормальные спаривания лестничных операторов с полями E и B.

На отрезке:

a−
i,n Ej(t, x) = δij i

√
ωn

Lx
sin(knx) eiωnt, Ei a+

j,n =

(
a−

j,n Ei

)∗

a−
z,n By(t, x) = −

√
ωn

Lx
cos(knx) eiωnt, By a+

z,n =

(
a−

z,n By

)∗

В параллелепипеде:

aλ−
npq E(x) = i

√
ωnpq

2 Aλ
npq(r) eiωnpqt, E(x) aλ+

npq =

(
aλ−

npq E(x)
)∗

aλ−
npq B(x) = 1√

2ωnpq
∇×Aλ

npq(r) eiωnpqt, B(x) aλ+
npq =

(
aλ−

npq B(x)
)∗

И. Копчинский (кафедра ФЧК) Защита бакалаврской работы 30 мая 2022 2 / 10



Запас | Общий критерий резонанса

Установившаяся амплитуда Esig сигнальной моды в резонаторе D с
границей S – решение начально-краевой задачи:

(□+ Γ∂t)Esig(t, r) = F(t, r), r ∈ D, t > 0,
Esig(0, r) = 0, r ∈ D,

n × Esig(r) = 0, r ∈ S.

Esig(t, r) =
∞∑

k=1
Esig

k (t) · Ek(r).

Ësig
n (t) + ΓĖsig

n (t) + ω2
nEsig

n (t) = Fn(t), Fn(t) ≡
∫

D F(t,r)·En(r)dr
∥En∥2 .

Критерий резонанса для сигнальной моды с частотой ωsig

1 ωsig принадлежит к спектру резонатора (∃ m ∈ N : ωsig = ωm),
2 Временной спектр Fm(t) содержит ωsig.
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Запас | Общая схема анализа

1 Находим моды резонатора данной формы
{
Ek(r) ↔ ωk

}∞

k=1

2 Задаём конфигурацию мод накачки Epump(t, r) and Bpump(t, r)

3 Вычисляем правую часть волновых уравнений Fel(t, r) and Fmg(t, r)

4 Определяем, какие ωsig могли бы появиться из-за кубического
смешивания мод накачки:
ω1, ω2 −→ ωsig ∈ {ω1, ω2, 3ω1, 3ω2, 2ω1 ± ω2, 2ω2 ± ω1}

5 Проверяем оба условия критерия резонанса для каждой ωsig:
Находим m такой, чтобы ωsig = ωm

Проверяем, что гармоника ωsig остаётся в правой части
ωsig ∈ Fm(t) = 1

∥Em∥2
∫

D F(t, r) · Em(r)dr
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Запас | Параллелепипед: одномодовый режим

(□+ ΓΩ∂t)Esig(t, r) = Fel(t, r)
(□+ ΓΩ∂t)Bsig(t, r) = Fmg(t, r)

TM: npq 3n, p, q n, 3p, q n, p, 3q n, 3p, 3q 3n, p, 3q 3n, 3p, q 3n, 3p, 3q
Fel

ωnpq, 3ωnpq ωnpqFmg

TE: npq 3n, p, q n, 3p, q n, p, 3q n, 3p, 3q 3n, p, 3q 3n, 3p, q 3n, 3p, 3q
Fel

ωnpq, 3ωnpq ωnpqFmg

Есть только резонанс основной частоты ωnpq.
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Запас | Параллелепипед: двухмодовый режим

Моды накачки: TMn1p1q1 + TEn2p2q2 , ω1 := ωn1p1q1 , ω2 := ωn2p2q2
правые части сигнальных уравнений могут содержать только
слагаемые:
h(ωsigt) · h(ksig,xx) · h(ksig,yy) · h(ksig,zz), h(·) = sin(·) или cos(·),

ωsig ∈ { ω1, ω2, 2ω1 ± ω2, 2ω2 ± ω1, 3ω1, 3ω2 },
ksig,i ∈ { k1,i, k2,i, 2k1,i ± k2,i, 2k2,i ± k1,i, 3k1,i, 3k2,i },

i = x, y, z

Первое условие резонанса: ω2
sig = k2

sig,x + k2
sig,y + k2

sig,z

Поиск моды 2ω1 + ω2. Неравенство треугольника.

2ω2 + ω1 = |2k2|+ |k1| ⩾ |2k2 + k1| =

√√√√ 3∑
i=1

(2k2,i + k1,i)2

Равенство выполняется при параллельных волновых векторах k1 ∥ k2

В случае не параллельных волновых векторов, неравенство
треугольника требует хотя бы для одного i, чтобы
ksig,i = 3 ×max (k1,i, k2,i)
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Запас | Параллелепипед: двухмодовый режим

Полный расчёт
∫

D F(t, r) · En(r)dr слишком ресурсозатратен

Усечённая схема анализа:
2 × 3 задач на скалярные компоненты Esig

i ,Bsig
i , i = x, y, z

решение задачи на Esig
z (t, r) отдельно от других компонент

скалярное разложение по модам Esig
z (t, r) =

∞∑
k=1

Esig
k,z(t)Ek,z(r)

расчёт Fel
k,z(t) = 1

∥Ek,z∥2
∫

D Fel
z (t, r)Ek,z(r) dr заметно быстрее

частичного решения достаточно, чтобы доказать отсутствие
резонансной генерации
если бы резонанс был, то компонента Esig

z (t, r) усиливалась бы (а мы
покажем, что она не резонирует)
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Запас | Параллелепипед: ТМ110 + ТЕ011

TM-моды: 110 130 310 330
Fel,Fmg ω110, 3ω110, 2ω011 ± ω110 ω110, 3ω110 ω110

TM-моды: 112 132 211 231
Fel,Fmg ω110, 2ω011 ± ω110 ω011, 2ω110 ± ω011

TE-моды: 011 031 013 033
Fel,Fmg ω011, 3ω011, 2ω110 ± ω011 ω011, 3ω011 ω011

TE-моды: 112 132 211 231
Fel,Fmg ω110, 2ω011 ± ω110 ω011, 2ω110 ± ω011

Резонирует ωnpq, а также можно сгенерировать ω130 либо ω031 .
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Запас | Вывод поправок

δS =

∫ (
−1

4δf + 2αfδf + 2βgδg
)

d4x =(
δf = 4Fµν∂µδAν , δg = 4F̃µν∂µδAν , d4x = dxµ d3Sµ

)
=

∫∫ (
−Fµν + 8αfFµν + 8βgF̃µν

)∂(δAν)

∂xµ dxµ d3Sµ =

=

((((((((((((((((((∫ (
−Fµν + 8αfFµν + 8βgF̃µν

)
δAν

∣∣∣∣∣
xµ1

xµ0

d3Sµ −

−
∫∫

∂

∂xµ
(
−Fµν + 8αfFµν + 8βgF̃µν

)
δAν dxµ d3Sµ .
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Запас | Вывод поправок

δS = −
∫

∂

∂xµ
(
−Fµν + 8αfFµν + 8βgF̃µν

)
δAν d4x ,

∀ δAν δS ≡ 0 ⇒

∂µ

(
Fµν − 8αfFµν − 8βgF̃µν

)
= 0.

Fµν = ∂µAν − ∂νAµ =


0 −Ex −Ey −Ez

Ex 0 −Bz +By
Ey +Bz 0 −Bx
Ez −By +Bx 0

 , F̃µν =
1
2 ϵ

αβµνFαβ .
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